Towards Sub-10 nm Diameter InGaAs Vertical Nanowire MOSFETs and TFETs

J. A. del Alamo, X. Zhao, W. Lu, and A. Vardi

Microsystems Technology Laboratories

Massachusetts Institute of Technology

5th Berkeley Symposium on Energy Efficient Electronic Systems & Steep Transistors Workshop

Berkeley, CA, October 19-20, 2017

Acknowledgements:

- Students and collaborators: D. Antoniadis, E. Fitzgerald, E. Yablonovitch
- Sponsors: DTRA, KIST, Lam Research, Samsung, SRC
- Labs at MIT: MTL, EBL

Vertical Nanowire MOSFETs: the ultimate scalable transistor

Vertical nanowire MOSFET: ultimate scalable transistor

Vertical NW MOSFET:

 \rightarrow uncouples footprint scaling from L_g, L_{spacer}, and L_c scaling

InGaAs Vertical Nanowires on Si by direct growth

Vapor-Solid-Liquid (VLS) Technique Selective-Area Epitaxy (SAE)

InAs NWs on Si by SAE Riel, MRS Bull 2014

Riel, IEDM 2012

InGaAs VNW-MOSFETs by top-down approach @ MIT

Top-down approach: flexible and manufacturable

InGaAs Vertical Nanowires @ MIT

Key enabling technologies:

- RIE = $BCI_3/SiCI_4/Ar$ chemistry
- Digital Etch (DE) = self-limiting O_2 plasma oxidation + H_2SO_4 or HCl oxide removal
- Radial etch rate=1 nm/cycle
- Sub-20 nm NW diameter
- Aspect ratio > 10
- Smooth sidewalls

Zhao, IEDM 2013 Zhao, EDL 2014 Zhao, IEDM 2014

III-V VNW MOSFET/TFET process flow

NW-MOSFET I-V characteristics: D=40 nm

Single nanowire MOSFET:

- L_{ch}= 80 nm
- $3 \text{ nm Al}_2\text{O}_3 \text{ (EOT = 1.5 nm)}$

Zhao, CSW 2017

Benchmark with Si/Ge VNW MOSFETs

Peak g_m of InGaAs (V_{DS} =0.5 V), Si and Ge VNW MOSFETs

- InGaAs competitive with Si
- Need to demonstrate VNW MOSFETs with D<10 nm

InGaAs VNW Mechanical Stability for D<10 nm

8 nm InGaAs VNWs after 7 DE cycles:

8 nm InGaAs VNWs: Yield = 0%

Difficult to reach 10 nm VNW diameter due to breakage

InGaAs VNW Mechanical Stability for D<10 nm

Difficult to reach 10 nm VNW diameter due to breakage

8 nm InGaAs VNWs: Yield = 0%

Water-based acid is problem:

Surface tension (mN/m):

- Water: 72
- Methanol: 22
- IPA: 23

Solution: alcohol-based digital etch

Alcohol-Based Digital Etch

8 nm InGaAs VNWs after 7 DE cycles:

Lu, EDL 2017

10% HCl in Dl water Yield = 0% 10% HCl in IPA Yield = 97%

Radial etch rate: 1.0 nm/cycle

Radial etch rate: 1.0 nm/cycle

Alcohol-based DE enables D < 10 nm

D=5.5 nm VNW arrays

10% H₂SO₄ in methanol

90% yield

- H₂SO₄:methanol yields 90% at D=6 nm!
- Viscosity matters: methanol (0.54 cP) vs. IPA (2.0 cP)

InGaAs Digital Etch

First demonstration of D=5 nm diameter InGaAs VNW (Aspect Ratio > 40)

Latest! D=15 nm InGaAs VNW MOSFET

Single nanowire MOSFET:

- L_{ch}= 80 nm
- 2.5 nm Al_2O_3 (EOT = 1.3 nm)

10^{-3} V_{ds}=0.5 V Mo contact 10⁻⁴ <u></u>]D = 15 nm 300 °C N₂ RTA 10⁻⁵ V_{ds}=0.05 V I_d (A/μm) 10⁻⁶ 10⁻⁷ - $\mathsf{S}_{\mathsf{lin}}$ = 69 mV/dec10⁻⁸ ∓ $S_{sat} = 76 \text{ mV/dec}$ 10⁻⁹ ⁼ DIBL = 67 mV/dec **10**⁻¹⁰ 0.0 0.2 0.4 0.6 -0.2 $V_{qs}(V)$ 500₇ $V_{ds} = 0.5 V$ $g_{m,pk}$ = 460 μ S/ μ m 400 Mo contact D = 15 nm g_m (μS/μm) 300 300 °C N₂ RTA 200 100 0.3 -0.2 0.0 0.1 0.2 0.4 -0.1 $V_{gs}(V)$

Zhao, IEDM 2017

Benchmark with Si/Ge VNW MOSFETs

Peak g_m of InGaAs (V_{DS} =0.5 V), Si and Ge VNW MOSFETs

Most aggressively scaled VNW MOSFET ever

InGaAs/InAs heterojunction VNW TFETs @ MIT

Top-down approach: flexible and manufacturable

Gen-2 InGaAs VNW-TFET

Single NW: D= 40 nm, L_{ch} = 60 nm, 3 nm Al₂O₃ (EOT = 1.5 nm) New step: final RTA \rightarrow 10 fold reduction in D_{it}

- Saturated output characteristics
- Clear negative differential resistance
- Peak to valley ratio of 3.4 @ $V_{gs} = 0.6 V$

Zhao, EDL 2017

NW-TFET subthreshold characteristics

- Sub-thermal for 2 orders of magnitude of current
 - $S_{lin} = 55 \text{ mV/dec}$
 - S_{sat} = 53 mV/dec

Zhao, EDL 2017

Random Telegraph noise (RTN) in TFETs

- RTN consistent with jump in subthreshold current
- Single-trap behavior visible

Conclusions

- Improved InGaAs etching technology: sub-10 nm nanowires with very high aspect ratio and high yield
- InGaAs VNW MOSFETs with record characteristics
- InGaAs VNW TFETs with subthermal behavior over 2 orders of magnitude of I_D
- Exciting new results to be presented at IEDM 2017